Problem Description
Given two integers n and maxValue, count the number of distinct “ideal” arrays of length n such that:
- Every element is between 1andmaxValue.
- For every i > 0,arr[i] % arr[i-1] == 0.
Return the count modulo 10⁹+7.
Key Insights
- Any ideal array can be seen as choosing a strictly increasing divisibility‐chain of distinct values
 [v₁∣v₂∣…∣vₖ], then “spreading” thosekvalues (with repetitions) across thenslots.
- We first count, for each end‑value vand chain‑lengthk, the number of divisor‑chains ending atvof lengthk.
- Once a chain of length kis chosen, the number of ways to intersperse itskblocks into thenpositions is
 (\displaystyle \binom{n-1}{k-1}).
- The maximum distinct‑value chain‑length is only about (\lfloor\log₂(\text{maxValue})\rfloor+1), so both DP and combinatorics stay efficient.
Space and Time Complexity
- Time:
- DP “sieve” over v=1…maxValue, extending each chain to its multiples takes
 (\sum_{v=1}^{\text{maxValue}}(\tfrac{\text{maxValue}}{v}\cdot L)=O(\text{maxValue}·\log\text{maxValue}·L)).
- Precomputing combinations (\binom{s}{k}) for s=0…n-1,k=0…L-1is (O(n·L)).
- Final sum is (O(\text{maxValue}·L)).
 
- DP “sieve” over 
- Space:
- cnt[maxValue+1][L]for DP, and- comb[n][L]for binomials → (O(\text{maxValue}·L + n·L)).
 
Solution
- DP‑build chains
 Letcnt[v][k]= number of strictly‑increasing divisor‑chains of lengthk+1that end atv.- Initialize cnt[v][0]=1(the chain[v]).
- For each vand eachk<L-1, addcnt[v][k]intocnt[m][k+1]for every multiplem=v*2, v*3,…≤maxValue.
 
- Initialize 
- Precompute binomials
 Build Pascal’s trianglecomb[s][k] = C(s, k)for0≤s<n,0≤k<L.
- Aggregate answer
 [ \sum_{v=1}^{\text{maxValue}};\sum_{k=0}^{\min(L-1,n-1)} \text{cnt}[v][k];\times;\binom{n-1}{k} ;\bmod 10^{9}+7. ]